

Rodrigo Martins de Souza

Previsão da Atenuação por Chuvas Através de uma Modelagem Semi-Empírica Consistente para Enlaces Rádio Terrestre e Via Satélite

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio como parte dos requisitos parciais para obtenção do título de Doutor em Engenharia Elétrica.

Orientador: Prof. Luiz Alencar Reis da Silva Mello

Rio de Janeiro Agosto de 2006

Rodrigo Martins de Souza

Previsão da Atenuação por Chuvas Através de uma Modelagem Semi-Empírica Consistente para Enlaces Rádio Terrestre e Via Satélite

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada

Prof. Luiz Alencar Reis da Silva Mello Orientador

Centro de Estudos em Telecomunicações - PUC-Rio

Prof. Mauro Soares AssisUFF

Prof. Erasmus Couto Brasil de Miranda UCP

Prof. Rodolfo Sabóia Lima de Souza Centro de Estudos em Telecomunicações - PUC-Rio

> Prof. Nelson Alexander Pérez García Universidad de Los Andes

> > Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 11 de agosto de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Rodrigo Martins de Souza

Graduou-se em Engenharia de Comunicações pelo Instituto Militar de Engenharia – IME em 1993. Cursou Mestrado em Engenharia de Comunicações pelo Instituto Militar de Engenharia – IME. Responsável pelo planejamento, implantação e gerência de projetos em redes rádio do Exército Brasileiro no âmbito do RJ e ES.

Ficha Catalográfica

Souza, Rodrigo Martins de

Previsão de atenuação por chuvas através de uma modelagem semi-empírica consistente para enlaces rádio terrestres e via satélite / Rodrigo Martins de Souza ; orientador: Luiz Alencar Reis da Silva Mello. – 2006.

164f.; 30 cm

Tese (doutorado em Engenharia Elétrica)— Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2006.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Atenuação por chuvas. 3. Enlaces rádio. 4. Comunicações via satélite. 5. Radiometeorologia. 6. Telecomunicações. I. Mello, Luiz Alencar Reis da Silva. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

CDD: 621.3

A Deus Todo Poderoso, a meus pais, a minha esposa a minha filha

Agradecimentos

A minha família, em especial, minha esposa, pelo incentivo, compreensão durante o período do desenvolvimento deste trabalho e permanente fonte de inspiração.

Ao meu orientador, Professor Luiz A. R. da Silva Mello, pela sua contínua assessoria e apoio pessoal, moral e profissional.

Ao Professor Rodolfo Sabóia Lima de Souza, por sua amizade, orientação, colaboração, entusiasmo e parceria para a realização deste trabalho.

Ao Professor Erasmus Couto de Miranda, por suas importantes orientações que ajudaram o desenvolvimento deste trabalho.

Ao Professor Mauro Soares Assis, pelo incentivo inicial.

Aos amigos Antônio Nascimento, Antônio Neto e Marcelo, pelo apoio e colaborações importantes para o desenvolvimento deste trabalho.

Aos amigos, chefes e subordinados do 2º CTA, em especial ao Grupo Serra/1, pelo apoio profissional e amizade.

Ao amigo Jorge Luís Cerqueira, por sua amizade.

A todos os amigos e familiares que de uma forma ou de outra me estimularam ou me ajudaram.

Resumo

Souza, Rodrigo Martins; Silva Mello, Luiz Alencar Reis da (Orientador). Previsão da Atenuação por Chuvas Através de uma Modelagem Semi-Empírica Consistente para Enlaces Rádio Terrestre e Via Satélite. Rio de Janeiro, 2006. 164p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

Com a crescente utilização de sistemas de acesso sem fio ponto-multiponto em banda larga, operando em freqüências cada vez mais elevadas, cresce também a necessidade do desenvolvimento de novos modelos, mais precisos e consistentes, para a previsão da atenuação por chuvas, principal efeito da propagação em frequências superiores a 10 GHz. Este trabalho apresenta uma modelagem semi-empírica para a previsão do comportamento estatístico da atenuação por chuvas em enlaces rádio terrestres ponto-a-ponto e via satélite. Os modelos foram desenvolvidos com base em resultados de medições conjuntas de taxa de precipitação e atenuação por chuvas em diversas regiões do Brasil, realizadas no período de desenvolvimento deste trabalho, além de medidas de várias partes do mundo, disponíveis no banco de dados de propagação da União Internacional de Telecomunicações (UIT-R). Os modelos desenvolvidos permitem obter a distribuição cumulativa de probabilidades da atenuação por chuvas a partir da distribuição da taxa de precipitação medida ou estimada na região do enlace. Embora existam diversos modelos propostos na literatura para previsão da atenuação em enlaces terrestres ou em enlaces via satélite, duas características importantes não são encontradas, conjuntamente, na maioria deles: utilizar, como base para a previsão, a distribuição da taxa de precipitação em toda a faixa de percentagens de tempo de interesse, e não apenas em um ou dois pontos; e manter consistência entre os modelos para os casos terrestre e via satélite. Além não de atender a estes requisitos, os modelos propostos apresentam erros de previsão menores ou equivalentes aos dos principais modelos da literatura, quando testados contra os resultados disponíveis de medidas em enlaces reais.

Palayras-chave

Atenuação por Chuvas, Enlaces Rádio, Comunicações via Satélite, Radiometeorologia, Telecomunicações

Abstract

Souza, Rodrigo Martins; Silva Mello, Luiz Alencar Reis da (Advisor). A Semi-Empiric Consistent Model for Rain Attenuation Prediction in Terrestrial and Satellite Radio Links. Rio de Janeiro, 2006. 164p. MSc. Dissertation - Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

The development of new technologies for broadband wireless access, using increasingly higher frequencies, points to the necessity of more accurate methods for rain attenuation, that represents the most serious impairment for radio systems operating in frequencies above 10 GHz. This work presents semi-empirical models for the prediction of rain attenuation in terrestrial and satellite links. The models were developed using data obtained in concurrent measurements of rain attenuation and point rainfall rate in different regions of Brazil. Some of these measurements were performed as part of this work and some were already available from previous measurements campaigns. Data available in the UIT-R data banks of propagation measurements were also used, in order to develop global methods. The models that have been developed allow the prediction of the cumulative probability distribution of rain attenuation from the cumulative distribution of point rainfall rate in the region of the link. Although several methods with these purpose can be found in the technical literature, the ones developed in this work present some important features that are not found, as a whole, in any of those models: they use the full rainfall rate distribution over the entire range of time percentages of interest; the terrestrial and satellite models are consistent, that is, the elements used in the terrestrial prediction model are kept in the satellite prediction model that involves a mor complex geometry. Besides that, the models proposed show an excelent performance in terms of prediction error, when compared with measured data.

Keywords

Rain Attenuation, Radio Links, Satellite Communications, Radiometeorology, Telecommunications

Sumário

1 Introdução	15
1.1 Motivação	15
1.2 Resumo do Problema	16
1.3 Objetivos do Trabalho	17
1.4 Organização do Trabalho	18
2 Conceitos Básicos	20
2.1 Atenuação por Chuvas em enlaces Rádio	20
2.2 Cálculo da Atenuação Epecífica	22
2.2.1 Método Teórico Rigoroso	22
2.2.2 Características dos Espalhadores	24
2.2.3 Método empírico	25
2.2.4 Recomendação do UIT-R para o cálculo dos valores de a(f) e b(f)	29
2.3 Distribuições Cumulativas de Taxa de Precipitação	31
3 Modelos para Previsão da Atenuação por Chuvas	33
3.1 Modelos para Previsão da Atenuação por Chuvas em Enlaces Terrestres	34
3.1.1 Recomendação P.530-10 (Modelo do UIT-R)	35
3.1.2 Modelo de Crane	38
3.1.3 Modelo Australiano (DOCUMENTO 3M/38-E, DE UIT-R)	39
3.1.4 Modelo Reino Unido (UK)	40
3.1.5 Modelo Pérez-Mello (CETUC 2004)	40
3.1.6 Modelo Chinês 2005	42
3.2 Modelos para Previsão da Atenuação por Chuvas em Enlaces Satélite	42
3.2.1 Modelo da Recomendação 618-8	44
3.2.2 Modelo Brasil [73]	46
3.2.3 Modelo Australiano	47
3.2.4 Modelo Reino Unido (UK)	48
3.2.5 Modelo Chinês 2005	49
4 Resultados Experimentais	50
4.1 Descrição do Experimento	53
4.2 Pré-Processamento de Séries Temporais [62]	56
4.3 Análise de Dados	57
4.3.1 Distribuição Cumulativa da Taxa de Precipitação	58
4.3.2 Distribuição Cumulativa da Atenuação por Chuva	59
4.3.3 Distribuição Cumulativa da Atenuação Diferencial	60
4.4 Resultados das Medidas Realizadas	60
4.5 Banco de Dados de Medidas Existentes	62
4.4.1 Base de Dados de Uit-R [60]	62
4.4.2 Experimentos Realizados Anteriormente no Brasil [60]	64

5.1 Desenvolvimento de Modelos para Previsão da Atenuação por Chuvas 5.1 Desenvolvimento de Modelos para a Previsão da Atenuação em Enlaces	65
Terrestres	66
5.1.1 Formulação Bi-Dimensional para o Fator de Correção Horizontal	67
5.1.2 Modelo de Previsão Baseado no Comprimento Efetivo do Enlace –	07
Modelo 1	69
5.1.3 Modelo de Previsão Baseado na Taxa de Precipitação Efetiva –	0)
Modelo 2	74
5.1.4 Comparação entre os Modelos para Enlaces Terrestres	81
5.2 Desenvolvimento de Modelos para a Previsão da Atenuação em Enlaces	
Satélite	87
5.2.1 Formulação do Modelo para Enlaces Satélite	87
5.2.1 Ajuste do Fator de Correção Vertical com a Taxa de Precipitação	
Medida	88
5.2.3 Comparação entre os Modelos para Enlaces Via Satélite	92
5.3 Modelos para a Previsão da Atenuação Diferencial em Enlaces Terrestres	97
5.3.1 O Conceito de Atenuação Diferencial	97
5.3.2 Revisão do Modelo para Previsão da Atenuação Diferencial	99
6 Conclusões e Sugestões	102
6.1 Conclusões	102
6.2 Sugestões para Futuros Trabalhos	102
0.2 Sugestoes para 1 ataros 11aounios	101
7 Referências bibliográficas	105
Apêndice A – Resultados das Medições Realizadas	111
Apêndice B – Cálculo do Comprimento Efetivo para Células	
Bi-Dimensionais	122
B1 Modelagem da Célula de Chuva Circular	122
B1.1 Situação I : Círculo intercepta o enlace em dois pontos (E e F)	122
B1.2 Situação II : Círculo intercepta o enlace em apenas um ponto (F)	124
B1.3 Cálculo do fator de redução para células de chuva bidimensionais	126
B1.3.1 Limites de Integração	127
Anava 1 Canasitas	125
Anexo 1 – Conceitos	135 135
AN 1 Seção Reta	
AN 1.1 Seção Reta Diferencial de Espalhamento (σ _d)	135
AN 1.2 Seção Reta de Espalhamento (σ_s)	136
AN 1.3 Seção Reta de Absorção (σ_a)	136
AN 1.4 Seção Reta Total ou de Extinção (σ_t)	136
AN 1.5 Albedo (W ₀) AN 1.6 Relação entre Seção Reta Total e Seção Reta Geométrica para	137
$D >> \lambda$	137
AN 1.7 Teorema Avançado de Espalhamento ou Teorema Ótico	137
AN 1.8 Representação Integral da Amplitude de Espalhamento e da Seção	130
Reta de Absorção	139
AN 1.9 Teoria de Mie	142

Anexo 2 – Validação da Relação A = aR ^b	145
AN 2 Validação da Relação	145
AN 2.1 Validação da relação empírica $\gamma = aR^b$	145
AN 2.2 Validação da relação para frequência baixa	145
AN2.3 Validação da relação para frequência alta	149
AN 2.4 Validação da relação para frequência intermediária	150
Anexo 3 – Características dos Enlaces em Bancos de Dados da Literatura	151

Lista de figuras

Figura 1 – Atenuação por chuvas (A), fog (B) e gases atmosféricos (C)	21
Figura 2 – Comparação entre o cálculo da atenuação usando Teoria de	
Mie e Aproximação Analítica. [5]	27
Figura 3 – Antigas regiões climáticas de chuva definidas pelo UIT-R –	
América do Sul	32
Figura 4 – Taxa de precipitação excedida durante 0,01% do tempo	32
Figura 5 – Geometria para a determinação do fator de redução do modelo da	
UIT-R	37
Figura 6 – Distribuição cumulativa da atenuação por chuva no enlace	
Barueri-RIS	41
Figura 7 – Principais parâmetros de um enlace terra – satélite [72]	43
Figura 8 – Distribuição geográfica dos enlaces convergentes de	
Brasília: (a) primeiro ano de medições; (b) segundo ano de medições.	52
Figura 9 – Distribuição geográfica dos 4 (quatro) enlaces convergentes do	
Rio de Janeiro	53
Figura 10 – Set-up experimental das medidas da atenuação por chuvas nos	
enlaces convergentes de Brasília e Rio de Janeiro	54
Figura 11 – Esquema básico da UAD	55
Figura 12 – Série temporal da potência recebida e da taxa de precipitação,	
gerada pelo programa TSEDIT	57
Figura 13 – Distribuições cumulativas da atenuação medida em Brasília	61
Figura 14 – Distribuições cumulativas da atenuação medida no Rio de Janeiro	61
Figura 15 – Distribuições cumulativas da taxa de precipitação medida	62
Figura 16 – Região onde a célula provoca atenuação no enlace A-B	
(vista superior)	67
Figura 17 – Dependência do fator de redução horizontal com R – modelo 1	70
Figura 18 – Dependência do fator de redução horizontal com d – modelo 1	70
Figura 19 – Valores medidos e previstos pelo modelo 1 (taxa de	
precipitação medida)	73
Figura 20 – Valores medidos e previstos pelo modelo 1 (taxa de precipitação	
Rec. 837)	73
Figura 21 – Distribuição dos resíduos para o modelo 1 (taxa de	
precipitação medida)	74
Figura 22 – Distribuição dos resíduos para o modelo 1 (taxa de precipitação	
Rec. 837)	74
Figura 23 – Dependência do fator de redução horizontal com d – modelo 2	76
Figura 24 – Dependência do fator de redução horizontal com R – modelo 2	76
Figura 25 – Valores medidos e previstos pelo modelo 2 (taxa de	
precipitação medida)	78
Figura 26 – Valores medidos e previstos pelo modelo 2 (taxa de precipitação	
da Rec. 837)	78
Figura 27 – Distribuição dos resíduos para o modelo 2 (taxa de precipitação	_
medida)	79
Figura 28 – Distribuição dos resíduos para o modelo 2 (taxa de precipitação	
da Rec. 837)	79

Figura 29 – Valores medidos e previstos para o modelo 2 modificado	
(Rec. 837)	81
Figura 30 – Distribuição dos resíduos para o modelo 2 terrestre (Rec. 837)	81
Figura 31 – Comparação entre os erros (Rec.311) dos modelos de previsão	
da atenuação por chuvas em enlaces terrestres (taxa de precipitação medida)	85
Figura 32 – Comparação entre os erros (Rec.311) dos modelos de previsão	
da atenuação por chuvas em enlaces terrestres (taxa de precipitação Rec. 837)	85
Figura 33 – Dependência do fator de redução vertical com R	89
Figura 34 – Dependência do fator de redução vertical com <i>h</i>	89
Figura 35 – Dependência do fator de redução vertical com <i>a latitude</i>	90
Figura 36 – Valores medidos e previstos para o modelo satélite	
(precipitação medida)	91
Figura 37 – Valores medidos e previstos para o satélite (Rec. 837)	91
Figura 38 – Distribuição dos resíduos para o modelo satélite	
(precipitação medida)	92
Figura 39 – Distribuição dos resíduos para o modelo satélite (Rec. 837)	92
Figura 40 – Comparação entre os erros (Rec.311) dos modelos de previsão	
da atenuação por chuvas em enlaces satélite (taxa de precipitação medida)	96
Figura 41 – Comparação entre os erros (Rec.311) dos modelos de previsão	
da atenuação por chuvas em enlaces satélite (taxa de precipitação Rec. 837)	96
Figura 42 – Situação de atenuação diferencial por chuvas	97
Figura 43 – Atenuação diferencial vs atenuação no enlace 1	98
Figura 44 – Atenuação diferencial vs atenuação no enlace 2	99
Figura 45 – Valores medidos vs previstos da atenuação diferencial	100
Figura 46 – Histograma de resíduos do modelo da atenuação diferencial	100
Figura 47 – Célula de chuva intercepta dois pontos do enlace	122
Figura 48 – Célula de chuva intercepta um ponto próximo à extremidade	
A do enlace	124
Figura 49 – Célula de chuva intercepta um ponto próximo à extremidade	
B do enlace	125
Figura 50 – (a) Região no espaço bidimensional onde a célula de chuva	
pode interferir no enlace AB; (b) As três posições para integração do	
segmento de reta que intercepta o enlace	126
Figura 51 – Região de integração	127
Figura 52 – Relação entre seção reta total e seção reta geométrica.	137
Figura 53 – Geometria para Teoria de Mie	142

Lista de tabelas

Tabela 1 – Parâmetros a e b	28
Tabela 2 – Coeficiente k	30
Tabela 3 – Coeficiente α .	30
Tabela 4 – Regiões climáticas de UIT-R	31
Tabela 5 – Parâmetros dos modelos de previsão da atenuação por chuvas	
em enlaces terrestres	35
Tabela 6 – Parâmetros dos modelos para previsão da atenuação em enlaces	
via satélite	43
Tabela 7 – Dados dos enlaces terrestres convergentes de Brasília	51
Tabela 8 – Dados dos enlaces terrestres convergentes do Rio de Janeiro	52
Tabela 9 – Freqüências de operação dos enlaces terrestres da base de dados	
de UIT-R	63
Tabela 10 – Comprimento dos enlaces terrestres da base de dados de UIT-R	63
Tabela 11 – Comprimento dos enlaces satélite da base de dados de UIT-R	64
Tabela 12 – Frequência de operação dos enlaces satélite da base de dados de	٠.
UIT-R	64
Tabela 13 – Valores das constantes ajustadas para modelo 1	72
Tabela 14 – Valores das constantes ajustadas para modelo 2	77
Tabela 15 – Valores das constantes ajustadas para modelo 2 modificado	80
Tabela 16 – Erro médio de previsão para enlaces terrestres (taxa de	00
precipitação medida)	82
Tabela 17 – Erro médio de previsão para enlaces terrestres (taxa de	02
precipitação da Rec.837)	82
Tabela 18 – Desvio padrão do erro de previsão para enlaces terrestres	02
(taxa de precipitação medida)	83
Tabela 19 – Desvio padrão do erro de previsão para enlaces terrestres	03
(taxa de precipitação da Rec.837)	83
Tabela 20 – Valor r.m.s. do erro de previsão para enlaces terrestres	0.5
(taxa de precipitação medida)	84
Tabela 21 – Valor r.m.s. do erro de previsão para enlaces terrestres	0.
(taxa de precipitação da Rec.837)	84
Tabela 22 – Valores das constantes ajustadas para os modelos para enlaces	٠.
satélite	90
Tabela 23 – Erro médio de previsão para enlaces satélite (taxa de	, ,
precipitação medida)	93
Tabela 24 – Erro médio de previsão para enlaces satélite (taxa de	, ,
precipitação Rec.837)	93
Tabela 25 – Desvio padrão do erro de previsão para enlaces satélite	, -
(taxa de precipitação medida)	94
Tabela 26 – Desvio padrão do erro de previsão para enlaces satélite	, .
(taxa de precipitação Rec.837)	94
Tabela 27 – Valor r.m.s. do erro de previsão para enlaces satélite	, .
(taxa de precipitação medida)	94
Tabela 28 – Valor r.m.s. do erro de previsão para enlaces satélite	- •
(taxa de precipitação Rec.837)	95
Tabela 29 – Coeficientes para previsão da atenuação diferencial	101
i i ,	

Tabela 30 – Dados de localização dos enlaces de Brasília	111
Tabela 31 – Dados de localização dos enlaces do Rio de Janeiro	112
Tabela 32 – Medidas de atenuações e taxas de precipitação de chuva	
realizadas no Rio de Janeiro e em Brasília.	112
Tabela 33 – Medidas de atenuações diferenciais e taxas de precipitação de	
chuva realizadas em Brasília	116
Tabela 33 – Características dos enlaces terrestres	151
Tabela 34 – Características dos enlaces satélite	153